Exact envelope computation for moving surfaces with quadratic support functions
نویسندگان
چکیده
We consider surfaces whose support function is obtained by restricting a quadratic polynomial to the unit sphere. If such a surface is subject to a rigid body motion, then the Gauss image of the characteristic curves is shown to be a spherical quartic curve, making them accessible to exact geometric computation. In particular we analyze the case of moving surfaces of revolution.
منابع مشابه
Algorithms for Complex Shapes with Certified Numerics and Topology Computing Envelopes of Quadrics
We present the computation of envelopes of a set of quadratic surfaces defined in IR. Our solution is based on the new Cgal Envelope 3 package that provides a generic and robust implementation of a divideand-conquer algorithm. This work concentrates on the theory of algebraic and combinatorial tasks that occur for quadratic surfaces and their implementation. The implementation is exact and effi...
متن کاملFast Distance Computation Using Quadratically Supported Surfaces
We use the class of surfaces with quadratic polynomial support functions in order to define bounding geometric primitives for shortest distance computation. The common normals of two such surfaces can be computed by solving a single polynomial equation of degree six. Based on this observation, we formulate an algorithm for computing the shortest distance between enclosures of two moving or stat...
متن کاملOn the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کاملVolumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets
MOS surfaces are rational surfaces in R which provide rational envelopes of the associated two-parameter family of spheres. Moreover, all the offsets admit rational parameterizations as well. Recently, it has been proved that quadratic triangular Bézier patches in R are MOS surfaces. Following this result, we describe an algorithm for computing an exact rational envelope of a two-parameter fami...
متن کاملModified moving least squares with polynomial bases for scattered data approximation
One common problem encountered in many fields is the generation of surfaces based on values at irregularly distributed nodes. To tackle such problems, we present a modified, robust moving least squares (MLS) method for scattered data smoothing and approximation. The error functional used in the derivation of the classical MLS approximation is augmented with additional terms based on the coeffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008